Abstrakti

Randomized controlled trials (RCTs) are the accepted standard for treatment effect estimation but they can be infeasible due to ethical reasons and prohibitive costs. Single-arm trials, where all patients belong to the treatment group, can be a viable alternative but require access to an external control group. We propose an identifiable deep latent-variable model for this scenario that can also account for missing covariate observations by modeling their structured missingness patterns. Our method uses amortized variational inference to learn both group-specific and identifiable shared latent representations, which can subsequently be used for (i) patient matching if treatment outcomes are not available for the treatment group, or for (ii) direct treatment effect estimation assuming outcomes are available for both groups. We evaluate the model on a public benchmark as well as on a data set consisting of a published RCT study and real-world electronic health records. Compared to previous methods, our results show improved performance both for direct treatment effect estimation as well as for effect estimation via patient matching.

AlkuperäiskieliEnglanti
OtsikkoProceedings of the 27th International Conference on Artificial Intelligence and Statistics
KustantajaJMLR
Sivut2926-2934
Vuosikerta238
TilaJulkaistu - 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Conference on Artificial Intelligence and Statistics - Valencia, Espanja
Kesto: 2 toukok. 20244 toukok. 2024
http://aistats.org/aistats2024/

Julkaisusarja

NimiProceedings of Machine Learning Research
KustantajaPMLR
Vuosikerta238
ISSN (elektroninen)2640-3498

Conference

ConferenceInternational Conference on Artificial Intelligence and Statistics
LyhennettäAISTATS
Maa/AlueEspanja
KaupunkiValencia
Ajanjakso02/05/202404/05/2024
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Estimating treatment effects from single-arm trials via latent-variable modeling'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä