Estimating Test Statistic Distributions for Multiple Hypothesis Testing in Sensor Networks

Martin Golz, Abdelhak M. Zoubir, Visa Koivunen

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

1 Sitaatiot (Scopus)
35 Lataukset (Pure)


We recently proposed a novel approach to perform spatial inference using large-scale sensor networks and multiple hypothesis testing [1]. It identifies the regions in which a spatial phenomenon of interest exhibits different behavior from its nominal statistical model. To reduce the intra-sensor-network communication overhead, the raw data is pre-processed at the sensors locally and a summary statistic is send to the cloud or fusion center where the actual spatial inference using multiple hypothesis testing and false discovery control takes place. Local false discovery rates (lfdrs) are estimated to express local believes in the state of the spatial signal. In this work, we extend our approach by proposing two novel lfdr estimators stemming from the Expectation-Maximization method. The estimation bias is considered to explain the differences in performance among the compared lfdr estimators.

Otsikko2022 56th Annual Conference on Information Sciences and Systems, CISS 2022
ISBN (elektroninen)978-1-6654-1796-9
DOI - pysyväislinkit
TilaJulkaistu - 2022
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaConference on Information Sciences and Systems - Princeton, Yhdysvallat
Kesto: 9 maalisk. 202211 maalisk. 2022
Konferenssinumero: 56


ConferenceConference on Information Sciences and Systems


Sukella tutkimusaiheisiin 'Estimating Test Statistic Distributions for Multiple Hypothesis Testing in Sensor Networks'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä