Abstrakti
We present a novel framework for parallel exact inference in graphical models. Our framework supports error-correction during inference and enables fast verification that the result of inference is correct, with probabilistic soundness. The computational complexity of inference essentially matches the cost of w-cutset conditioning, a known generalization of Pearl's classical loop-cutset conditioning for inference. Verifying the result for correctness can be done with as little as essentially the square root of the cost of inference. Our main technical contribution amounts to designing a low-degree polynomial extension of the cutset approach, and then reducing to a univariate polynomial employing techniques recently developed for noninteractive probabilistic proof systems.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Proceedings of the AAAI Conference on Artificial Intelligence |
Julkaisupaikka | Palo Alto, CA, USA |
Kustantaja | AAAI Press |
Sivut | 10194 |
Sivumäärä | 10201 |
Vuosikerta | 34 (06) |
ISBN (painettu) | 978-1-57735-835-0 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 3 huhtik. 2020 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisuussa |
Tapahtuma | AAAI Conference on Artificial Intelligence - New York, Yhdysvallat Kesto: 7 helmik. 2020 → 12 helmik. 2020 Konferenssinumero: 34 https://aaai.org/Conferences/AAAI-20/ |
Julkaisusarja
Nimi | Proceedings of the AAAI Conference on Artificial Intelligence |
---|---|
Kustantaja | AAAI Press, Palo Alto, CA, USA |
Numero | 06 |
Vuosikerta | 34 |
ISSN (painettu) | 2159-5399 |
ISSN (elektroninen) | 2374-3468 |
Conference
Conference | AAAI Conference on Artificial Intelligence |
---|---|
Lyhennettä | AAAI |
Maa/Alue | Yhdysvallat |
Kaupunki | New York |
Ajanjakso | 07/02/2020 → 12/02/2020 |
www-osoite |