EPIC: Efficient integration of partitional clustering algorithms for classification

Vikas K. Garg, M. N. Murty

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

1 Sitaatiot (Scopus)

Abstrakti

Partitional algorithms form an extremely popular class of clustering algorithms. Primarily, these algorithms can be classified into two sub-categories: a) k-means based algorithms that presume the knowledge of a suitable k, and b) algorithms such as Leader, which take a distance threshold value, τ, as an input. In this work, we make the following contributions. We 1) propose a novel technique, EPIC, which is based on both the number of clusters, k and the distance threshold, τ, 2) demonstrate that the proposed algorithm achieves better performance than the standard k-means algorithm, and 3) present a generic scheme for integrating EPIC into different classification algorithms to reduce their training time complexity.

AlkuperäiskieliEnglanti
OtsikkoSimulated Evolution and Learning - 8th International Conference, SEAL 2010, Proceedings
Sivut706-710
Sivumäärä5
DOI - pysyväislinkit
TilaJulkaistu - 2010
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Conference on Simulated Evolution and Learning - Kanpur, Intia
Kesto: 1 jouluk. 20104 jouluk. 2010
Konferenssinumero: 8

Julkaisusarja

NimiLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Vuosikerta6457 LNCS
ISSN (painettu)0302-9743
ISSN (elektroninen)1611-3349

Conference

ConferenceInternational Conference on Simulated Evolution and Learning
LyhennettäSEAL
Maa/AlueIntia
KaupunkiKanpur
Ajanjakso01/12/201004/12/2010

Sormenjälki

Sukella tutkimusaiheisiin 'EPIC: Efficient integration of partitional clustering algorithms for classification'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä