Environment and Person-independent Gesture Recognition with Non-static RFID Tags Leveraging Adaptive Signal Segmentation

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

14 Lataukset (Pure)

Abstrakti

Gesture recognition for human machine interaction enhances the efficiency, safety, and usability of industrial and factory automation systems. We investigate hand-gesture recognition using battery-less body-worn reflective tags. Particularly, we propose two methods for hand gesture recognition using radio frequency identification (RFID). From backscattered signals we utilize in-phase and quadrature (IQ) constellation, as well as the phase. We convert extracted IQ samples into images and interprete them for gestures using a pre-trained VGG16. As a second approach we alternatively conduct pre-processing on the phase of the backscattered signals and propose Zero Crossing-Modified Derivative (ZCMD) for signal segmentation. Through signal resampling and wavelet denoising we mitigate undesired fluctuations introduced during this process, while retaining crucial signal characteristics. Subsequently, we integrate time-domain and frequency-domain features of the signals and train a random forest classifier based on these features to identify different gestures. Utilizing battery-free body-worn RFID tags, we are able to outperform a state-of-the art method and recognize four gestures with an accuracy of 81 % with the VGG16-based model. Employing phase, we achieve an accuracy of 94 %.

AlkuperäiskieliEnglanti
Otsikko2024 IEEE 29th International Conference on Emerging Technologies and Factory Automation, ETFA 2024
ToimittajatTullio Facchinetti, Angelo Cenedese, Lucia Lo Bello, Stefano Vitturi, Thilo Sauter, Federico Tramarin
KustantajaIEEE
Sivumäärä8
ISBN (elektroninen)979-8-3503-6123-0
DOI - pysyväislinkit
TilaJulkaistu - 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Conference on Emerging Technologies and Factory Automation - Padova, Italia
Kesto: 10 syysk. 202413 syysk. 2024

Julkaisusarja

NimiIEEE International Conference on Emerging Technologies and Factory Automation, ETFA
ISSN (painettu)1946-0740
ISSN (elektroninen)1946-0759

Conference

ConferenceIEEE International Conference on Emerging Technologies and Factory Automation
LyhennettäETFA
Maa/AlueItalia
KaupunkiPadova
Ajanjakso10/09/202413/09/2024

Sormenjälki

Sukella tutkimusaiheisiin 'Environment and Person-independent Gesture Recognition with Non-static RFID Tags Leveraging Adaptive Signal Segmentation'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä