Projekteja vuodessa
Abstrakti
We consider the problem of operator-valued kernel learning and investigate the possibility of going beyond the well-known separable kernels. Borrowing tools and concepts from the field of quantum computing, such as partial trace and entanglement, we propose a new view on operator-valued kernels and define a general family of kernels that encompasses previously known operator-valued kernels, including separable and transformable kernels. Within this framework, we introduce another novel class of operator-valued kernels called entangled kernels that are not separable. We propose an efficient two-step algorithm for this framework, where the entangled kernel is learned based on a novel extension of kernel alignment to operator-valued kernels. We illustrate our algorithm with an application to supervised dimensionality reduction, and demonstrate its effectiveness with both artificial and real data for multi-output regression.
Alkuperäiskieli | Englanti |
---|---|
Sivut | 1-40 |
Sivumäärä | 40 |
Julkaisu | Journal of Machine Learning Research |
Vuosikerta | 22 |
Tila | Julkaistu - tammik. 2021 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |
Sormenjälki
Sukella tutkimusaiheisiin 'Entangled Kernels - Beyond Separability'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.-
MAGITICS: Koneoppimismenetelmät antibioottiresistenssin digitaalisessa diagnoosissa
Rousu, J., Bach, E., Huusari, R., Szedmak, S. & Xiang, W.
01/01/2020 → 31/12/2023
Projekti: Academy of Finland: Other research funding
-
Koneoppimismenetelmät laskennallisessa metabolomiikassa
Rousu, J., Brouard, C., Huusari, R., Bach, E. & Sabzevari, M.
01/09/2017 → 31/08/2021
Projekti: Academy of Finland: Other research funding