Abstrakti
We present a few ways of using conformal maps in the reconstruction of two-dimensional conductivities in electrical impedance tomography. First, by utilizing the Riemann mapping theorem, we can transform any simply connected domain of interest to the unit disk where the D-bar method can be implemented most efficiently. In particular, this applies to the open upper half-plane. Second, in the unit disk we may choose a region of interest that is magnified using a suitable Möbius transform. To facilitate the efficient use of conformal maps, we introduce input current patterns that are named conformally transformed truncated Fourier basis; in practice, their use corresponds to positioning the available electrodes close to the region of interest. These ideas are numerically tested using simulated continuum data in bounded domains and simulated point electrode data in the half-plane. The connections to practical electrode measurements are also discussed.
Alkuperäiskieli | Englanti |
---|---|
Sivut | 373-400 |
Sivumäärä | 28 |
Julkaisu | Inverse Problems and Imaging |
Vuosikerta | 12 |
Numero | 2 |
DOI - pysyväislinkit | |
Tila | Julkaistu - maalisk. 2018 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |