Energy management strategy of intelligent plug-in split hybrid electric vehicle based on deep reinforcement learning with optimized path planning algorithm

Shengguang Xiong, Yishi Zhang, Chaozhong Wu*, Zhijun Chen, Jiankun Peng, Mingyang Zhang

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliReview ArticleScientificvertaisarvioitu

Abstrakti

Energy management is a fundamental task and challenge of plug-in split hybrid electric vehicle (PSHEV) research field because of the complicated powertrain and variable driving conditions. Motivated by the foresight of intelligent vehicle and the breakthroughs of deep reinforcement learning framework, an energy management strategy of intelligent plug-in split hybrid electric vehicle (IPSHEV) based on optimized Dijkstra’s path planning algorithm (ODA) and reinforcement learning Deep-Q-Network (DQN) is proposed to cope with the challenge. Firstly, a gray model is used to predict the traffic congestion of each road and the length of each road calculated in the traditional Dijkstra’s algorithm (DA) is modified for path planning. Secondly, on the basis of the predicted velocity of each road, the planned velocity is constrained by the vehicle dynamics to ensure the driving security. Finally, the planning information is inputted to DQN to control the working mode of IPSHEV, so as to achieve energy saving of the vehicle. The simulation results show the optimized path planning algorithm and proposed energy management strategy is feasible and effective.

AlkuperäiskieliEnglanti
Artikkeli09544070211036810
Sivut3287-3298
Sivumäärä12
JulkaisuProceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering
Vuosikerta235
Numero14
DOI - pysyväislinkit
TilaJulkaistu - joulukuuta 2021
OKM-julkaisutyyppiA2 Arvio tiedejulkaisuussa (artikkeli)

Sormenjälki

Sukella tutkimusaiheisiin 'Energy management strategy of intelligent plug-in split hybrid electric vehicle based on deep reinforcement learning with optimized path planning algorithm'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä