TY - JOUR
T1 - Energy-Efficient and Secure Double RIS-Aided Wireless Sensor Networks: A QoS-Aware Fuzzy Deep Reinforcement Learning Approach
AU - Khatami, Sarvenaz Sadat
AU - Shoeibi, Mehrdad
AU - Salehi, Reza
AU - Kaveh, Masoud
N1 - Publisher Copyright:
© 2025 by the authors.
PY - 2025/2
Y1 - 2025/2
N2 - Wireless sensor networks (WSNs) are a cornerstone of modern Internet of Things (IoT) infrastructure, enabling seamless data collection and communication for many IoT applications. However, the deployment of WSNs in remote or inaccessible locations poses significant challenges in terms of energy efficiency and secure communication. Sensor nodes, with their limited battery capacities, require innovative strategies to minimize energy consumption while maintaining robust network performance. Additionally, ensuring secure data transmission is critical for safeguarding the integrity and confidentiality of IoT systems. Despite various advancements, existing methods often fail to strike an optimal balance between energy efficiency and quality of service (QoS), either depleting limited energy resources or compromising network performance. This paper introduces a novel framework that integrates double reconfigurable intelligent surfaces (RISs) into WSNs to enhance energy efficiency while ensuring secure communication. To jointly optimize both RIS phase shift matrices, we employ a fuzzy deep reinforcement learning (FDRL) framework that integrates reinforcement learning (RL) with fuzzy logic and long short-term memory (LSTM)-based architecture. The RL component learns optimal actions by iteratively interacting with the environment and updating Q-values based on a reward function that prioritizes both energy efficiency and secure communication. The LSTM captures temporal dependencies in the system state, allowing the model to make more informed predictions about future network conditions, while the fuzzy logic layer manages uncertainties by using optimized membership functions and rule-based inference. To explore the search space efficiently and identify optimal parameter configurations, we use the advantage of the multi-objective artificial bee colony (MOABC) algorithm as an optimization strategy to fine-tune the hyperparameters of the FDRL framework while simultaneously optimizing the membership functions of the fuzzy logic system to improve decision-making accuracy under uncertain conditions. The MOABC algorithm enhances convergence speed and ensures the adaptability of the proposed framework in dynamically changing environments. This framework dynamically adjusts the RIS phase shift matrices, ensuring robust adaptability under varying environmental conditions and maximizing energy efficiency and secure data throughput. Simulation results validate the effectiveness of the proposed FDRL-based double RIS framework under different system configurations, demonstrating significant improvements in energy efficiency and secrecy rate compared to existing methods. Specifically, quantitative analysis demonstrates that the FDRL framework improves energy efficiency by 35.4%, the secrecy rate by 29.7%, and RSMA by 27.5%, compared to the second-best approach. Additionally, the model achieves an R² score improvement of 12.3%, confirming its superior predictive accuracy.
AB - Wireless sensor networks (WSNs) are a cornerstone of modern Internet of Things (IoT) infrastructure, enabling seamless data collection and communication for many IoT applications. However, the deployment of WSNs in remote or inaccessible locations poses significant challenges in terms of energy efficiency and secure communication. Sensor nodes, with their limited battery capacities, require innovative strategies to minimize energy consumption while maintaining robust network performance. Additionally, ensuring secure data transmission is critical for safeguarding the integrity and confidentiality of IoT systems. Despite various advancements, existing methods often fail to strike an optimal balance between energy efficiency and quality of service (QoS), either depleting limited energy resources or compromising network performance. This paper introduces a novel framework that integrates double reconfigurable intelligent surfaces (RISs) into WSNs to enhance energy efficiency while ensuring secure communication. To jointly optimize both RIS phase shift matrices, we employ a fuzzy deep reinforcement learning (FDRL) framework that integrates reinforcement learning (RL) with fuzzy logic and long short-term memory (LSTM)-based architecture. The RL component learns optimal actions by iteratively interacting with the environment and updating Q-values based on a reward function that prioritizes both energy efficiency and secure communication. The LSTM captures temporal dependencies in the system state, allowing the model to make more informed predictions about future network conditions, while the fuzzy logic layer manages uncertainties by using optimized membership functions and rule-based inference. To explore the search space efficiently and identify optimal parameter configurations, we use the advantage of the multi-objective artificial bee colony (MOABC) algorithm as an optimization strategy to fine-tune the hyperparameters of the FDRL framework while simultaneously optimizing the membership functions of the fuzzy logic system to improve decision-making accuracy under uncertain conditions. The MOABC algorithm enhances convergence speed and ensures the adaptability of the proposed framework in dynamically changing environments. This framework dynamically adjusts the RIS phase shift matrices, ensuring robust adaptability under varying environmental conditions and maximizing energy efficiency and secure data throughput. Simulation results validate the effectiveness of the proposed FDRL-based double RIS framework under different system configurations, demonstrating significant improvements in energy efficiency and secrecy rate compared to existing methods. Specifically, quantitative analysis demonstrates that the FDRL framework improves energy efficiency by 35.4%, the secrecy rate by 29.7%, and RSMA by 27.5%, compared to the second-best approach. Additionally, the model achieves an R² score improvement of 12.3%, confirming its superior predictive accuracy.
KW - double reconfigurable intelligent surface
KW - energy efficiency
KW - fuzzy reinforcement learning
KW - quality of service
KW - secrecy rate
KW - wireless sensor networks
UR - http://www.scopus.com/inward/record.url?scp=85218898437&partnerID=8YFLogxK
U2 - 10.3390/jsan14010018
DO - 10.3390/jsan14010018
M3 - Article
AN - SCOPUS:85218898437
SN - 2224-2708
VL - 14
JO - Journal of Sensor and Actuator Networks
JF - Journal of Sensor and Actuator Networks
IS - 1
M1 - 18
ER -