Empirical evaluation of bayesian optimization in parametric tuning of chaotic systems

Mudassar Abbas, Alexander Ilin, Antti Solonen, Janne Hakkarainen, Erkki Oja, Heikki Järvinen

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

1 Sitaatiot (Scopus)

Abstrakti

In this work, we consider the Bayesian optimization (BO) approach for parametric tuning of complex chaotic systems. Such problems arise, for instance, in tuning the sub-grid-scale parameterizations in weather and climate models. For such problems, the tuning procedure is generally based on a performance metric which measures how well the tuned model fits the data. This tuning is often a computationally expensive task. We show that BO, as a tool for finding the extrema of computationally expensive objective functions, is suitable for such tuning tasks. In the experiments, we consider tuning parameters of two systems: a simplified atmospheric model and a low-dimensional chaotic system. We show that BO is able to tune parameters of both the systems with a low number of objective function evaluations.
AlkuperäiskieliEnglanti
Sivut467-485
JulkaisuINTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION
Vuosikerta6
Numero6
DOI - pysyväislinkit
TilaJulkaistu - 2016
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki Sukella tutkimusaiheisiin 'Empirical evaluation of bayesian optimization in parametric tuning of chaotic systems'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

  • Laitteet

    Science-IT

    Mikko Hakala (Manager)

    Perustieteiden korkeakoulu

    Laitteistot/tilat: Facility

  • Siteeraa tätä