Abstrakti

GFlowNets are a promising alternative to MCMC sampling for discrete compositional random variables. Training GFlowNets requires repeated evaluations of the unnormalized target distribution, or reward function. However, for large-scale posterior sampling, this may be prohibitive since it incurs traversing the data several times. Moreover, if the data are distributed across clients, employing standard GFlowNets leads to intensive client-server communication. To alleviate both these issues, we propose embarrassingly parallel GFlowNet (EP-GFlowNet). EP-GFlowNet is a provably correct divide-and-conquer method to sample from product distributions of the form R(⋅)∝R1(⋅)...RN(⋅) — e.g., in parallel or federated Bayes, where each Rn is a local posterior defined on a data partition. First, in parallel, we train a local GFlowNet targeting each Rn and send the resulting models to the server. Then, the server learns a global GFlowNet by enforcing our newly proposed aggregating balance condition, requiring a single communication step. Importantly, EP-GFlowNets can also be applied to multi-objective optimization and model reuse. Our experiments illustrate the effectiveness of EP-GFlowNets on multiple tasks, including parallel Bayesian phylogenetics, multi-objective multiset and sequence generation, and federated Bayesian structure learning.
AlkuperäiskieliEnglanti
OtsikkoProceedings of the 41st International Conference on Machine Learning
ToimittajatRuslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, Felix Berkenkamp
KustantajaJMLR
Sivut45406-45431
TilaJulkaistu - 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Conference on Machine Learning - Vienna, Itävalta
Kesto: 21 heinäk. 202427 heinäk. 2024
Konferenssinumero: 41

Julkaisusarja

NimiProceedings of Machine Learning Research
KustantajaJMLR
Vuosikerta235
ISSN (elektroninen)2640-3498

Conference

ConferenceInternational Conference on Machine Learning
LyhennettäICML
Maa/AlueItävalta
KaupunkiVienna
Ajanjakso21/07/202427/07/2024

Sormenjälki

Sukella tutkimusaiheisiin 'Embarrassingly Parallel GFlowNets'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä