Projekteja vuodessa
Abstrakti
GFlowNets are a promising alternative to MCMC sampling for discrete compositional random variables. Training GFlowNets requires repeated evaluations of the unnormalized target distribution, or reward function. However, for large-scale posterior sampling, this may be prohibitive since it incurs traversing the data several times. Moreover, if the data are distributed across clients, employing standard GFlowNets leads to intensive client-server communication. To alleviate both these issues, we propose embarrassingly parallel GFlowNet (EP-GFlowNet). EP-GFlowNet is a provably correct divide-and-conquer method to sample from product distributions of the form R(⋅)∝R1(⋅)...RN(⋅) — e.g., in parallel or federated Bayes, where each Rn is a local posterior defined on a data partition. First, in parallel, we train a local GFlowNet targeting each Rn and send the resulting models to the server. Then, the server learns a global GFlowNet by enforcing our newly proposed aggregating balance condition, requiring a single communication step. Importantly, EP-GFlowNets can also be applied to multi-objective optimization and model reuse. Our experiments illustrate the effectiveness of EP-GFlowNets on multiple tasks, including parallel Bayesian phylogenetics, multi-objective multiset and sequence generation, and federated Bayesian structure learning.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Proceedings of the 41st International Conference on Machine Learning |
Toimittajat | Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, Felix Berkenkamp |
Kustantaja | JMLR |
Sivut | 45406-45431 |
Tila | Julkaistu - 2024 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | International Conference on Machine Learning - Vienna, Itävalta Kesto: 21 heinäk. 2024 → 27 heinäk. 2024 Konferenssinumero: 41 |
Julkaisusarja
Nimi | Proceedings of Machine Learning Research |
---|---|
Kustantaja | JMLR |
Vuosikerta | 235 |
ISSN (elektroninen) | 2640-3498 |
Conference
Conference | International Conference on Machine Learning |
---|---|
Lyhennettä | ICML |
Maa/Alue | Itävalta |
Kaupunki | Vienna |
Ajanjakso | 21/07/2024 → 27/07/2024 |
Sormenjälki
Sukella tutkimusaiheisiin 'Embarrassingly Parallel GFlowNets'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 2 Päättynyt
-
ELISE: European Learning and Intelligent Systems Excellence
Kaski, S. (Vastuullinen tutkija)
01/09/2020 → 31/08/2024
Projekti: EU: Framework programmes funding
-
-: Finnish Center for Artificial Intelligence
Kaski, S. (Vastuullinen tutkija)
01/01/2019 → 31/12/2022
Projekti: Academy of Finland: Other research funding