ELFI: Engine for likelihood-free inference

Jarno Lintusaari, Henri Vuollekoski, Antti Kangasrääsiö, Kusti Skytén, Marko Järvenpää, Pekka Marttinen, Michael U. Gutmann, Aki Vehtari, Jukka Corander, Samuel Kaski

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

8 Sitaatiot (Scopus)
52 Lataukset (Pure)

Abstrakti

Engine for Likelihood-Free Inference (ELFI) is a Python software library for performing likelihood-free inference (LFI). ELFI provides a convenient syntax for arranging components in LFI, such as priors, simulators, summaries or distances, to a network called ELFI graph. The components can be implemented in a wide variety of languages. The stand-alone ELFI graph can be used with any of the available inference methods without modifications. A central method implemented in ELFI is Bayesian Optimization for Likelihood-Free Inference (BOLFI), which has recently been shown to accelerate likelihood-free inference up to several orders of magnitude by surrogate-modelling the distance. ELFI also has an inbuilt support for output data storing for reuse and analysis, and supports parallelization of computation from multiple cores up to a cluster environment. ELFI is designed to be extensible and provides interfaces for widening its functionality. This makes the adding of new inference methods to ELFI straightforward and automatically compatible with the inbuilt features.

AlkuperäiskieliEnglanti
Sivut1-7
Sivumäärä7
JulkaisuJournal of Machine Learning Research
Vuosikerta19
TilaJulkaistu - 1 elokuuta 2018
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki Sukella tutkimusaiheisiin 'ELFI: Engine for likelihood-free inference'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

  • Siteeraa tätä