Efficient solution of symmetric eigenvalue problems from families of coupled systems

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

3 Sitaatiot (Scopus)
152 Lataukset (Pure)

Abstrakti

Efficient solution of the lowest eigenmodes is studied for a family of related eigenvalue problems with common 2 × 2 block structure. It is assumed that the upper diagonal block varies between different versions while the lower diagonal block and the range of the coupling blocks remain unchanged. Such block structure naturally arises when studying the effect of a subsystem to the eigenmodes of the full system. The proposed method is based on interpolation of the resolvent function after some of its singularities have been removed by a spectral projection. Singular value decomposition can be used to further reduce the dimension of the computational problem. Error analysis of the method indicates exponential convergence with respect to the number of interpolation points. Theoretical results are illustrated by two numerical examples related to finite element discretization of the Laplace operator.

AlkuperäiskieliEnglanti
Sivut1789-1814
Sivumäärä26
JulkaisuSIAM Journal on Numerical Analysis
Vuosikerta57
Numero4
DOI - pysyväislinkit
TilaJulkaistu - 1 tammik. 2019
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Efficient solution of symmetric eigenvalue problems from families of coupled systems'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä