Efficient Exploration of the Rashomon Set of Rule-Set Models

Martino Ciaperoni, Han Xiao, Aristides Gionis

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

1 Sitaatiot (Scopus)
45 Lataukset (Pure)

Abstrakti

Today, as increasingly complex predictive models are developed, simple rule sets remain a crucial tool to obtain interpretable predictions and drive high-stakes decision making. However, a single rule set provides a partial representation of a learning task. An emerging paradigm in interpretable machine learning aims at exploring the Rashomon set of all models exhibiting near-optimal performance. Existing work on Rashomon-set exploration focuses on exhaustive search of the Rashomon set for particular classes of models, which can be a computationally challenging task. On the other hand, exhaustive enumeration leads to redundancy that often is not necessary, and a representative sample or an estimate of the size of the Rashomon set is sufficient for many applications. In this work, we propose, for the first time, efficient methods to explore the Rashomon set of rule-set models with or without exhaustive search. Extensive experiments demonstrate the effectiveness of the proposed methods in a variety of scenarios.

AlkuperäiskieliEnglanti
OtsikkoKDD 2024 - Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
KustantajaACM
Sivut478-489
Sivumäärä12
ISBN (elektroninen)979-8-4007-0490-1
DOI - pysyväislinkit
TilaJulkaistu - 25 elok. 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaACM SIGKDD International Conference on Knowledge Discovery and Data Mining - Barcelona, Espanja
Kesto: 25 elok. 202429 elok. 2024
Konferenssinumero: 30

Conference

ConferenceACM SIGKDD International Conference on Knowledge Discovery and Data Mining
LyhennettäKDD
Maa/AlueEspanja
KaupunkiBarcelona
Ajanjakso25/08/202429/08/2024

Sormenjälki

Sukella tutkimusaiheisiin 'Efficient Exploration of the Rashomon Set of Rule-Set Models'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä