Efficient counting with optimal resilience

Christoph Lenzen, Joel Rybicki, Jukka Suomela

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

3 Sitaatiot (Scopus)
187 Lataukset (Pure)

Abstrakti

Consider a complete communication network of n nodes, where the nodes receive a common clock pulse. We study the synchronous c-counting problem: given any starting state and up to f faulty nodes with arbitrary behavior, the task is to eventually have all correct nodes labeling the pulses with increasing values modulo c in agreement. Thus, we are considering algorithms that are self-stabilizing despite Byzantine failures. In this work, we give new algorithms for the synchronous counting problem that (1) are deterministic, (2) have optimal resilience, (3) have a linear stabilization time in f (asymptotically optimal), (4) use a small number of states, and, consequently, (5) communicate a small number of bits per round. Prior algorithms either resort to randomization, use a large number of states and need high communication bandwidth, or have suboptimal resilience. In particular, we achieve an exponential improvement in both state complexity and message size for deterministic algorithms. Moreover, we present two complementary approaches for reducing the number of bits communicated during and after stabilization.

AlkuperäiskieliEnglanti
Sivut1473-1500
Sivumäärä28
JulkaisuSIAM JOURNAL ON COMPUTING
Vuosikerta46
Numero4
DOI - pysyväislinkit
TilaJulkaistu - 2017
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Efficient counting with optimal resilience'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä