Abstrakti
We give practical, efficient algorithms that automatically determine the asymptotic distributed round complexity of a given locally checkable graph problem in the [Θ(log n), Θ(n)] region, in two settings. We present one algorithm for unrooted regular trees and another algorithm for rooted regular trees. The algorithms take the description of a locally checkable labeling problem as input, and the running time is polynomial in the size of the problem description. The algorithms decide if the problem is solvable in O(log n) rounds. If not, it is known that the complexity has to be Θ(n^{1/k}) for some k = 1, 2, ..., and in this case the algorithms also output the right value of the exponent k.
In rooted trees in the O(log n) case we can then further determine the exact complexity class by using algorithms from prior work; for unrooted trees the more fine-grained classification in the O(log n) region remains an open question.
In rooted trees in the O(log n) case we can then further determine the exact complexity class by using algorithms from prior work; for unrooted trees the more fine-grained classification in the O(log n) region remains an open question.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 36th International Symposium on Distributed Computing (DISC 2022) |
Toimittajat | Christian Scheideler |
Kustantaja | Schloss Dagstuhl - Leibniz-Zentrum für Informatik |
Luku | 8 |
Sivut | 1-19 |
ISBN (elektroninen) | 978-3-95977-255-6 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2022 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | International Symposium on Distributed Computing - Augusta, Yhdysvallat Kesto: 25 lokak. 2022 → 27 lokak. 2022 Konferenssinumero: 36 |
Julkaisusarja
Nimi | Leibniz International Proceedings in Informatics (LIPIcs) |
---|---|
Kustantaja | Schloss Dagstuhl--Leibniz-Zentrum für Informatik |
Vuosikerta | 246 |
ISSN (painettu) | 1868-8969 |
Conference
Conference | International Symposium on Distributed Computing |
---|---|
Lyhennettä | DISC |
Maa/Alue | Yhdysvallat |
Kaupunki | Augusta |
Ajanjakso | 25/10/2022 → 27/10/2022 |