Projekteja vuodessa
Abstrakti
High-order force constant expansions can provide accurate representations of the potential energy surface relevant to vibrational motion. They can be efficiently parametrized using quantum mechanical calculations and subsequently sampled at a fraction of the cost of the underlying reference calculations. Here, force constant expansions are combined via the hiphive package with GPU-accelerated molecular dynamics simulations via the GPUMD package to obtain an accurate, transferable, and efficient approach for sampling the dynamical properties of materials. The performance of this methodology is demonstrated by applying it both to materials with very low thermal conductivity (Ba8Ga16Ge30, SnSe) and a material with a relatively high lattice thermal conductivity (monolayer-MoS2). These cases cover both situations with weak (monolayer-MoS2, SnSe) and strong (Ba8Ga16Ge30) pho renormalization. The simulations also enable to access complementary information such as the spectral thermal conductivity, which allows to discriminate the contribution by different phonon modes while accounting for scattering to all orders. The software packages described here are made available to the scientific community as free and open-source software in order to encourage the more widespread use of these techniques as well as their evolution through continuous and collaborative development.
Alkuperäiskieli | Englanti |
---|---|
Artikkeli | 2100217 |
Sivumäärä | 13 |
Julkaisu | Advanced Theory and Simulations |
Vuosikerta | 5 |
Numero | 2 |
Varhainen verkossa julkaisun päivämäärä | 27 marrask. 2021 |
DOI - pysyväislinkit | |
Tila | Julkaistu - helmik. 2022 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |
Sormenjälki
Sukella tutkimusaiheisiin 'Efficient Calculation of the Lattice Thermal Conductivity by Atomistic Simulations with Ab Initio Accuracy'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Tietoaineistot
-
Data and code for "Efficient calculation of the lattice thermal conductivity by atomistic simulations with ab-initio accuracy"
Brorsson, J. (Creator), Hashemi Petrudi, A. (Creator), Fan, Z. (Creator), Fransson, E. (Creator), Eriksson, F. (Creator), Ala-Nissila, T. (Creator), Krasheninnikov, A. V. (Creator), Komsa, H.-P. (Creator) & Erhart, P. (Creator), Zenodo, 2021
DOI - pysyväislinkki: 10.5281/zenodo.5034181, https://zenodo.org/record/7915677
Tietoaineisto: Dataset
Projektit
- 2 Päättynyt
-
Kvanttiteknologian huippuyksikkö
Alipour, S. (Projektin jäsen), Ala-Nissilä, T. (Vastuullinen tutkija), Fan, Z. (Projektin jäsen), Tuorila, J. (Projektin jäsen) & Hirvonen, P. (Projektin jäsen)
01/01/2018 → 31/12/2020
Projekti: Academy of Finland: Other research funding
-
FUNTOMX: Kaksi-ulotteisten MXene-materiaalien hallittu funktionalisointi
Komsa, H.-P. (Vastuullinen tutkija)
01/09/2017 → 31/12/2019
Projekti: Academy of Finland: Other research funding