Efficient approximate online convolutional dictionary learning

Farshad Ghorbani Veshki, Sergiy Vorobyov

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

44 Lataukset (Pure)

Abstrakti

Most existing convolutional dictionary learning (CDL) algorithms are based on batch learning, where the dictionary filters and the convolutional sparse representations are optimized in an alternating manner using a training dataset. When large training datasets are used, batch CDL algorithms become prohibitively memory-intensive. An online-learning technique is used to reduce the memory requirements of CDL by optimizing the dictionary incrementally after finding the sparse representations of each training sample. Nevertheless, learning large dictionaries using the existing online CDL (OCDL) algorithms remains highly computationally expensive. In this paper, we present a novel approximate OCDL method that incorporates sparse decomposition of the training samples. The resulting optimization problems are addressed using the alternating direction method of multipliers. Extensive experimental evaluations using several image datasets and based on an image fusion task show that the proposed method substantially reduces computational costs while preserving the effectiveness of the state-of-the-art OCDL algorithms.
AlkuperäiskieliEnglanti
Sivut1165-1175
Sivumäärä11
Julkaisu IEEE Transactions on Computational Imaging
Vuosikerta9
DOI - pysyväislinkit
TilaJulkaistu - 15 jouluk. 2023
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Efficient approximate online convolutional dictionary learning'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä