Efficient All-Optical Plasmonic Modulators with Atomically Thin Van Der Waals Heterostructures

Tutkimustuotos: Lehtiartikkelivertaisarvioitu

Tutkijat

  • Xiangdong Guo
  • Ruina Liu
  • Debo Hu
  • Hai Hu
  • Zheng Wei
  • Rui Wang
  • Yunyun Dai
  • Yang Cheng
  • Ke Chen
  • Kaihui Liu
  • Guangyu Zhang
  • Xing Zhu
  • Zhipei Sun
  • Xiaoxia Yang
  • Qing Dai

Organisaatiot

  • National Center for Nanoscience and Technology Beijing
  • Peking University
  • University of Chinese Academy of Sciences
  • Chinese Academy of Sciences

Kuvaus

All-optical modulators are attracting significant attention due to their intrinsic perspective on high-speed, low-loss, and broadband performance, which are promising to replace their electrical counterparts for future information communication technology. However, high-power consumption and large footprint remain obstacles for the prevailing nonlinear optical methods due to the weak photon–photon interaction. Here, efficient all-optical mid-infrared plasmonic waveguide and free-space modulators in atomically thin graphene-MoS2 heterostructures based on the ultrafast and efficient doping of graphene with the photogenerated carrier in the monolayer MoS2 are reported. Plasmonic modulation of 44 cm−1 is demonstrated by an LED with light intensity down to 0.15 mW cm−2, which is four orders of magnitude smaller than the prevailing graphene nonlinear all-optical modulators (≈103 mW cm−2). The ultrafast carrier transfer and recombination time of photogenerated carriers in the heterostructure may achieve ultrafast modulation of the graphene plasmon. The demonstration of the efficient all-optical mid-infrared plasmonic modulators, with chip-scale integrability and deep-sub wavelength light field confinement derived from the van der Waals heterostructures, may be an important step toward on-chip all-optical devices.

Yksityiskohdat

AlkuperäiskieliEnglanti
Artikkeli1907105
JulkaisuAdvanced Materials
TilaSähköinen julkaisu (e-pub) ennen painettua julkistusta - 1 tammikuuta 2020
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

ID: 41006205