Educational data mining and learning analytics in programming: Literature review and case studies

Petri Ihantola, Arto Vihavainen, Alireza Ahadi, Matthew Butler, Jürgen Börstler, Stephen H. Edwards, Essi Isohanni, Ari Korhonen, Andrew Petersen, Kelly Rivers, Miguel Ángel Rubio, Judy Sheard, Bronius Skupas, Jaime Spacco, Claudia Szabo, Daniel Toll

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionScientificvertaisarvioitu

130 Sitaatiot (Scopus)


Educational data mining and learning analytics promise better understanding of student behavior and knowledge, as well as new information on the tacit factors that contribute to student actions. This knowledge can be used to inform decisions related to course and tool design and pedagogy, and to further engage students and guide those at risk of failure. This working group report provides an overview of the body of knowledge regarding the use of educational data mining and learning analytics focused on the teaching and learning of programming. In a literature survey on mining students' programming processes for 2005-2015, we observe a significant increase in work related to the field. However, the majority of the studies focus on simplistic metric analysis and are conducted within a single institution and a single course. This indicates the existence of further avenues of research and a critical need for validation and replication to better understand the various contributing factors and the reasons why certain results occur. We introduce a novel taxonomy to analyse replicating studies and discuss the importance of replicating and reproducing previous work. We describe what is the state of the art in collecting and sharing programming data. To better understand the challenges involved in replicating or reproducing existing studies, we report our experiences from three case studies using programming data. Finally, we present a discussion of future directions for the education and research community.

OtsikkoProceedings of the 2015 ITiCSE Conference on Working Group Reports, ITiCSE-WGP 2015
ISBN (elektroninen)9781450341462
DOI - pysyväislinkit
TilaJulkaistu - 4 heinäkuuta 2016
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaAnnual Conference on Innovation and Technology in Computer Science Education - Vilnius University, Vilnius, Liettua
Kesto: 6 heinäkuuta 20158 heinäkuuta 2015
Konferenssinumero: 20


NimiAnnual Conference on Innovation & Technology in Computer Science Education
ISSN (painettu)1942-647X


ConferenceAnnual Conference on Innovation and Technology in Computer Science Education

Sormenjälki Sukella tutkimusaiheisiin 'Educational data mining and learning analytics in programming: Literature review and case studies'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä