Edge-Promoting Adaptive Bayesian Experimental Design for X-ray Imaging

Tapio Helin, Nuutti Hyvonen, Juha Pekka Puska

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

3 Sitaatiot (Scopus)
63 Lataukset (Pure)


This work considers sequential edge-promoting Bayesian experimental design for (discretized) linear inverse problems, exemplified by X-ray tomography. The process of computing a total variation-type reconstruction of the absorption inside the imaged body via lagged diffusivity iteration is interpreted in the Bayesian framework. Assuming a Gaussian additive noise model, this leads to an approximate Gaussian posterior with a covariance structure that contains information on the location of edges in the posterior mean. The next projection geometry is then chosen through A- or D-optimal Bayesian design, which corresponds to minimizing the trace or the determinant of the updated posterior covariance matrix that accounts for the new projection. Two- and three-dimensional numerical examples based on simulated data demonstrate the functionality of the introduced approach.

JulkaisuSIAM Journal on Scientific Computing
DOI - pysyväislinkit
TilaJulkaistu - 2022
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä


Sukella tutkimusaiheisiin 'Edge-Promoting Adaptive Bayesian Experimental Design for X-ray Imaging'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä