Projekteja vuodessa
Abstrakti
This work considers sequential edge-promoting Bayesian experimental design for (discretized) linear inverse problems, exemplified by X-ray tomography. The process of computing a total variation-type reconstruction of the absorption inside the imaged body via lagged diffusivity iteration is interpreted in the Bayesian framework. Assuming a Gaussian additive noise model, this leads to an approximate Gaussian posterior with a covariance structure that contains information on the location of edges in the posterior mean. The next projection geometry is then chosen through A- or D-optimal Bayesian design, which corresponds to minimizing the trace or the determinant of the updated posterior covariance matrix that accounts for the new projection. Two- and three-dimensional numerical examples based on simulated data demonstrate the functionality of the introduced approach.
Alkuperäiskieli | Englanti |
---|---|
Sivut | B506-B530 |
Julkaisu | SIAM Journal on Scientific Computing |
Vuosikerta | 44 |
Numero | 3 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2022 |
OKM-julkaisutyyppi | A1 Julkaistu artikkeli, soviteltu |
Sormenjälki
Sukella tutkimusaiheisiin 'Edge-Promoting Adaptive Bayesian Experimental Design for X-ray Imaging'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 1 Päättynyt
-
Inversiomallinnuksen ja kuvantamisen huippuyksikkö
Hyvönen, N., Ojalammi, A., Puska, J., Hirvi, P., Perkkiö, L. & Kuutela, T.
01/01/2018 → 31/12/2020
Projekti: Academy of Finland: Other research funding