Edge Cloud Resource-aware Flight Planning for Unmanned Aerial Vehicles

Oussama Bekkouche, Tarik Taleb, Miloud Bagaa, Konstantinos Samdanis

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionScientificvertaisarvioitu

9 Sitaatiot (Scopus)
127 Lataukset (Pure)

Abstrakti

Unmanned Aerial Vehicles (UAVs) can offer a plethora of applications, provided that the appropriate ground control and complementary computing and storage services are available in close proximity. To accomplish this, edge cloud platforms, deployed at or close to the base stations, are essential. However, current UAV travel planning does not take into account the resource constraints of such edge cloud platforms. This paper introduces an aligned process for UAV flight planning and networking resource allocation, minimizing the total traveled distance. It proposes two solutions, namely (i) a Multi-access Edge Computing (MEC)-Aware UAVs' Path planning (MAUP) based on integer linear programming and (ii) an Accelerated MAUP (AMAUP), i.e., a heuristic and scalable approach that adopts the shortest weighted path algorithm considering directed graphs. The performance of the two solutions are evaluated using computer-based simulations and the obtained results demonstrate the effectiveness of the two solutions in achieving their design goals.

AlkuperäiskieliEnglanti
Otsikko2019 IEEE Wireless Communications and Networking Conference, WCNC 2019
KustantajaIEEE
ISBN (elektroninen)9781538676462
DOI - pysyväislinkit
TilaJulkaistu - 1 huhtik. 2019
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaIEEE Wireless Communications and Networking Conference - Marrakech, Marokko
Kesto: 15 huhtik. 201919 huhtik. 2019

Julkaisusarja

NimiIEEE Wireless Communications and Networking Conference
ISSN (painettu)1525-3511
ISSN (elektroninen)1558-2612

Conference

ConferenceIEEE Wireless Communications and Networking Conference
LyhennettäWCNC
Maa/AlueMarokko
KaupunkiMarrakech
Ajanjakso15/04/201919/04/2019

Sormenjälki

Sukella tutkimusaiheisiin 'Edge Cloud Resource-aware Flight Planning for Unmanned Aerial Vehicles'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä