Early Prediction of Movie Box Office Success Based on Wikipedia Activity Big Data

Márton Mestyán, Taha Yasseri*, János Kertész

*Tämän työn vastaava kirjoittaja

    Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

    147 Sitaatiot (Scopus)
    196 Lataukset (Pure)

    Abstrakti

    Use of socially generated "big data" to access information about collective states of the minds in human societies has become a new paradigm in the emerging field of computational social science. A natural application of this would be the prediction of the society's reaction to a new product in the sense of popularity and adoption rate. However, bridging the gap between "real time monitoring" and "early predicting" remains a big challenge. Here we report on an endeavor to build a minimalistic predictive model for the financial success of movies based on collective activity data of online users. We show that the popularity of a movie can be predicted much before its release by measuring and analyzing the activity level of editors and viewers of the corresponding entry to the movie in Wikipedia, the well-known online encyclopedia.

    AlkuperäiskieliEnglanti
    Artikkelie71226
    Sivut1-8
    JulkaisuPloS one
    Vuosikerta8
    Numero8
    DOI - pysyväislinkit
    TilaJulkaistu - 21 elokuuta 2013
    OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

    Sormenjälki Sukella tutkimusaiheisiin 'Early Prediction of Movie Box Office Success Based on Wikipedia Activity Big Data'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä