Dysarthric speech classification using glottal features computed from non-words, words and sentences

Narendra Nonavinakere Prabhakera, Paavo Alku

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionScientificvertaisarvioitu

14 Sitaatiot (Scopus)
262 Lataukset (Pure)

Abstrakti

Dysarthria is a neuro-motor disorder resulting from the disruption of normal activity in speech production leading to slow, slurred and imprecise (low intelligible) speech. Automatic classification of dysarthria from speech can be used as a potential clinical tool in medical treatment. This paper examines the effectiveness of glottal source parameters in dysarthric speech classification from three categories of speech signals, namely non-words, words and sentences. In addition to the glottal parameters, two sets of acoustic parameters extracted by the openSMILE toolkit are used as baseline features. A dysarthric speech classification system is proposed by training support vector machines (SVMs) using features extracted from speech utterances and their labels indicating dysarthria/healthy. Classification accuracy results indicate that the glottal parameters contain discriminating information required for the identification of dysarthria. Additionally, the complementary nature of the glottal parameters is demonstrated when these parameters, in combination with the openSMILE-based acoustic features, result in improved classification accuracy. Analysis of classification accuracies of the glottal and openSMILE features for non-words, words and sentences is carried out. Results indicate that in terms of classification accuracy the word level is best suited in identifying the presence of dysarthria.
AlkuperäiskieliEnglanti
OtsikkoProceedings of Interspeech
KustantajaInternational Speech Communication Association
Sivut3403-3407
Sivumäärä5
DOI - pysyväislinkit
TilaJulkaistu - 2 syyskuuta 2018
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaInterspeech - Hyderabad International Convention Centre, Hyderabad, Intia
Kesto: 2 syyskuuta 20186 syyskuuta 2018
http://interspeech2018.org/

Julkaisusarja

NimiInterspeech - Annual Conference of the International Speech Communication Association
ISSN (elektroninen)2308-457X

Conference

ConferenceInterspeech
MaaIntia
KaupunkiHyderabad
Ajanjakso02/09/201806/09/2018
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Dysarthric speech classification using glottal features computed from non-words, words and sentences'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä