Dynamical transitions and sliding friction of the phase-field-crystal model with pinning

Tutkimustuotos: Lehtiartikkelivertaisarvioitu

Tutkijat

Organisaatiot

Kuvaus

We study the nonlinear driven response and sliding friction behavior of the phase-field-crystal (PFC) model with pinning including both thermal fluctuations and inertial effects. The model provides a continuous description of adsorbed layers on a substrate under the action of an external driving force at finite temperatures, allowing for both elastic and plastic deformations. We derive general stochastic dynamical equations for the particle and momentum densities including both thermal fluctuations and inertial effects. The resulting coupled equations for the PFC model are studied numerically. At sufficiently low temperatures, we find that the velocity response of an initially pinned commensurate layer shows hysteresis with dynamical melting and freezing transitions for increasing and decreasing applied forces at different critical values. The main features of the nonlinear response in the PFC model are similar to the results obtained previously with molecular dynamics simulations of particle models for adsorbed layers.

Yksityiskohdat

AlkuperäiskieliEnglanti
Artikkeli011121
Sivut1-7
JulkaisuPhysical Review E
Vuosikerta81
Numero1
TilaJulkaistu - 2010
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

    Tutkimusalat

  • adsorbed layers sliding, phase field crystal model

ID: 709760