Dual Graph Denoising Model for Social Recommendation

Anchen Li*, Bo Yang*

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

Abstrakti

Graph-based social recommender systems utilize user-item interaction graphs and user-user social graphs to model user preferences. However, their performance can be limited by redundant and noisy information in these two graphs. Although several recommender studies on data denoising exist, most either rely on heuristic assumptions, which limit their adaptability, or use a single model that combines denoising and recommendation, potentially imposing substantial demands on the model capacity. To address these issues, we propose a dual Graph Denoising Social Recommender (GDSR), which consists of two steps: graph denoising and user preference prediction. First, we design a denoising module which exploits a dual diffusion model to alleviate noises in the interaction and social graphs by performing multi-step noise diffusion and removal. We develop three kinds of conditions to guide our dual graph diffusion paradigm and propose a cross-domain signal guidance mechanism to enhance the structure of denoised graphs. Second, we devise a recommender module that employs a dual graph learning structure on denoised graphs to generate recommendations. Moreover, we use additional supervision signals from the diffusion-enhanced data augmentation to introduce a graph contrastive learning task, enhancing the recommender module’s representation quality and robustness. Experiment results show the effectiveness of our GDSR.

AlkuperäiskieliEnglanti
OtsikkoWWW '25: Proceedings of the ACM on Web Conference 2025
KustantajaACM
Sivut347-356
Sivumäärä10
ISBN (elektroninen)979-8-4007-1274-6
DOI - pysyväislinkit
TilaJulkaistu - 28 huhtik. 2025
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaThe Web Conference - Sydney, Austraalia
Kesto: 28 huhtik. 20252 toukok. 2025
Konferenssinumero: 34
https://www2025.thewebconf.org/

Conference

ConferenceThe Web Conference
LyhennettäWWW
Maa/AlueAustraalia
KaupunkiSydney
Ajanjakso28/04/202502/05/2025
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Dual Graph Denoising Model for Social Recommendation'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä