DOA M-Estimation Using Sparse Bayesian Learning

Christoph F. Mecklenbräuker*, Peter Gerstoft, Esa Ollila

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

7 Sitaatiot (Scopus)
97 Lataukset (Pure)

Abstrakti

Recent investigations indicate that Sparse Bayesian Learning (SBL) is lacking in robustness. We derive a robust and sparse Direction of Arrival (DOA) estimation framework based on the assumption that the array data has a centered (zero-mean) complex elliptically symmetric (ES) distribution with finite second-order moments. In the derivation, the loss function can be quite general. We consider three specific choices: the ML-loss for the circularly symmetric complex Gaussian distribution, the ML-loss for the complex multivariate t-distribution (MVT) with nu degrees of freedom, and the loss for Huber's M-estimator. For Gaussian loss, the method reduces to the classic SBL method. The root mean square DOA performance of the derived estimators is discussed for Gaussian, MVT, and epsilon-contaminated noise. The robust SBL estimators perform well for all cases and nearly identical with classical SBL for Gaussian noise.

AlkuperäiskieliEnglanti
Otsikko2022 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Proceedings
KustantajaIEEE
Sivut4933-4937
Sivumäärä5
ISBN (elektroninen)978-1-6654-0540-9
DOI - pysyväislinkit
TilaJulkaistu - 2022
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Conference on Acoustics, Speech, and Signal Processing - Singapore, Singapore
Kesto: 23 toukok. 202227 toukok. 2022

Julkaisusarja

NimiIEEE International Conference on Acoustics, Speech and Signal Processing
Vuosikerta2022-May
ISSN (painettu)1520-6149
ISSN (elektroninen)2379-190X

Conference

ConferenceIEEE International Conference on Acoustics, Speech, and Signal Processing
LyhennettäICASSP
Maa/AlueSingapore
KaupunkiSingapore
Ajanjakso23/05/202227/05/2022

Sormenjälki

Sukella tutkimusaiheisiin 'DOA M-Estimation Using Sparse Bayesian Learning'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä