Distributed CPU Scheduling Subject to Nonlinear Constraints

Mohammadreza Doostmohammadian, Alireza Aghasi, Apostolos I. Rikos, Andreas Grammenos, Evangelia Kalyvianaki, Christoforos N. Hadjicostis, Karl H. Johansson, Themistoklis Charalambous

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionScientificvertaisarvioitu


This paper considers a network of collaborating agents for local resource allocation subject to nonlinear model constraints. In many applications, it is required (or desirable) that the solution be anytime feasible in terms of satisfying the sum-preserving global constraint. Motivated by this, sufficient conditions on the nonlinear mapping for anytime feasibility (or non-asymptotic feasibility) are addressed in this paper. For the two proposed distributed solutions, one converges over directed weight-balanced networks and the other one over undirected networks. In particular, we elaborate on uniform quantization and discuss the notion of ϵ-accurate solution, which gives an estimate of how close we can get to the exact optimizer subject to different quantization levels. This work, further, handles general (possibly non-quadratic) strictly convex objective functions with application to CPU allocation among a cloud of data centers via distributed solutions. The results can be used as a coordination mechanism to optimally balance the tasks and CPU resources among a group of networked servers while addressing quantization or limited server capacity.

Otsikko2022 IEEE Conference on Control Technology and Applications, CCTA 2022
ISBN (elektroninen)978-1-6654-7338-5
DOI - pysyväislinkit
TilaJulkaistu - 2022
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaIEEE Conference on Control Technology and Applications - Trieste, Italia
Kesto: 23 elok. 202225 elok. 2022


NimiControl Technology and Applications
ISSN (painettu)2768-0762
ISSN (elektroninen)2768-0770


ConferenceIEEE Conference on Control Technology and Applications


Sukella tutkimusaiheisiin 'Distributed CPU Scheduling Subject to Nonlinear Constraints'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.
  • FinEst Twins: FinEst Twins

    Nieminen, M.


    Projekti: EU: Framework programmes funding

Siteeraa tätä