Disorder-induced exceptional points and nodal lines in Dirac superconductors

Alexander A. Zyuzin*, Pascal Simon

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

8 Sitaatiot (Scopus)
131 Lataukset (Pure)


We consider the effect of disorder on the spectrum of quasiparticles in the point-node and nodal-line superconductors. Due to the anisotropic dispersion of quasiparticles disorder scattering may render the Hamiltonian describing these excitations non-Hermitian. Depending on the dimensionality of the system, we show that the nodes in the spectrum are replaced by Fermi arcs or Fermi areas bounded by exceptional points or exceptional lines, respectively. These features are illustrated by first considering a model of a proximity-induced superconductor in an anisotropic two-dimensional (2D) Dirac semimetal, where a Fermi arc in the gap bounded by exceptional points can be realized. We next show that the interplay between disorder and supercurrents can give rise to a 2D Fermi surface bounded by exceptional lines in three-dimensional (3D) nodal superconductors.

JulkaisuPhysical Review B
DOI - pysyväislinkit
TilaJulkaistu - 29 huhtikuuta 2019
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Siteeraa tätä