Discovering topically- and temporally-coherent events in interaction networks

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussavertaisarvioitu

Tutkijat

Organisaatiot

  • University of Helsinki

Kuvaus

With the increasing use of online communication platforms, such as email, Twitter, and messaging applications, we are faced with a growing amount of data that combine content (what is said), time (when), and user (by whom) information. Discovering meaningful patterns and understand what is happening in this data is an important challenge. We consider the problem of mining online communication data and finding top-k temporal events. A temporal event is a coherent topic that is discussed frequently in a relatively short time span, while its information flow respects the underlying network. Our method consists of two steps. We first introduce the notion of interaction meta-graph, which connects associated interactions. Using this notion, we define a temporal event to be a subset of interactions that (i) are topically and temporally close and (ii) correspond to a tree that captures the information flow. Finding the best temporal event leads to a budget version of the prize-collecting Steiner-tree (PCST) problem, which we solve using three different methods: a greedy approach, a dynamic-programming algorithm, and an adaptation to an existing approximation algorithm. Finding the top-k events maps to a maximum set-cover problem, and thus, solved by greedy algorithm. We compare and analyze our algorithms in both synthetic and real datasets, such as Twitter and email communication. The results show that our methods are able to detect meaningful temporal events. The software related to this paper are available at https://github.com/xiaohan2012/lst.

Yksityiskohdat

AlkuperäiskieliEnglanti
OtsikkoMachine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2016, Proceedings
TilaJulkaistu - 2016
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaEuropean Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases - Riva del Garda, Italia
Kesto: 19 syyskuuta 201623 syyskuuta 2016

Julkaisusarja

NimiLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Vuosikerta9852 LNAI
ISSN (painettu)03029743
ISSN (elektroninen)16113349

Conference

ConferenceEuropean Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases
LyhennettäECML PKDD
MaaItalia
KaupunkiRiva del Garda
Ajanjakso19/09/201623/09/2016

Lataa tilasto

Ei tietoja saatavilla

ID: 8775068