Projekteja vuodessa
Abstrakti
Drops are exceptionally mobile on lubricant-infused surfaces, yet they exhibit fundamentally different dynamics than on traditional superhydrophobic surfaces due to the formation of a wetting ridge around the drop. Despite the importance of the wetting ridge in controlling drop motion, it is unclear how it dissipates energy and changes shape during motion. Here, we use lattice Boltzmann simulations and confocal microscopy to image how the wetting ridge evolves with speed, and construct heatmaps to visualize where energy is dissipated on flat and rough lubricated surfaces. As speed increases, the wetting ridge height decreases according to a power law, and an asymmetry develops between the front and rear sides. Most of the dissipation in the lubricant (>75%) occurs directly in front and behind the drop. The geometry of the underlying solid surface hardly affects the dissipation mechanism, implying that future designs should focus on optimizing the surface geometry to maximize lubricant retention.
Alkuperäiskieli | Englanti |
---|---|
Artikkeli | 306 |
Sivut | 1-12 |
Sivumäärä | 12 |
Julkaisu | Communications Physics |
Vuosikerta | 7 |
Numero | 1 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 17 syysk. 2024 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |
Sormenjälki
Sukella tutkimusaiheisiin 'Direct visualization of viscous dissipation and wetting ridge geometry on lubricant-infused surfaces'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 2 Aktiivinen
-
Wong William: Enhanced Electrocatalysis via the Plastron Effect
Wong, W. (Vastuullinen tutkija), Koochak, P. (Projektin jäsen) & Alikhanifaradonbeh, R. (Projektin jäsen)
01/09/2022 → 31/08/2025
Projekti: Academy of Finland: Other research funding
-
SuperElectro: Super(de)wettability-enhanced Electrocatalysis
Ras, R. (Vastuullinen tutkija) & Wong, W. (Projektin jäsen)
01/05/2022 → 31/10/2025
Projekti: EU: MC