Dimension reduction for time series in a blind source separation context using r

Klaus Nordhausen*, Markus Matilainen, Jari Miettinen, Joni Virta, Sara Taskinen

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

1 Sitaatiot (Scopus)
15 Lataukset (Pure)

Abstrakti

Multivariate time series observations are increasingly common in multiple fields of science but the complex dependencies of such data often translate into intractable models with large number of parameters. An alternative is given by first reducing the dimension of the series and then modelling the resulting uncorrelated signals univariately, avoiding the need for any covariance parameters. A popular and effective framework for this is blind source separation. In this paper we review the dimension reduction tools for time series available in the R package tsBSS. These include methods for estimating the signal dimension of second-order stationary time series, dimension reduction techniques for stochastic volatility models and supervised dimension reduction tools for time series regression. Several examples are provided to illustrate the functionality of the package.

AlkuperäiskieliEnglanti
Sivut1-30
Sivumäärä30
JulkaisuJOURNAL OF STATISTICAL SOFTWARE
Vuosikerta98
Numero15
DOI - pysyväislinkit
TilaJulkaistu - 2021
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki

Sukella tutkimusaiheisiin 'Dimension reduction for time series in a blind source separation context using r'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.
  • Dimensionpienennys tensoriaalisille aineistoille

    Virta, J.

    01/09/201931/12/2019

    Projekti: Academy of Finland: Other research funding

Siteeraa tätä