Diffusion MRI GAN synthesizing fibre orientation distribution data using generative adversarial networks

Sebastian Vellmer*, Dogu Baran Aydogan, Timo Roine, Alberto Cacciola, Thomas Picht, Lucius S. Fekonja*

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

2 Lataukset (Pure)

Abstrakti

Machine learning may enhance clinical data analysis but requires large amounts of training data, which are scarce for rare pathologies. While generative neural network models can create realistic synthetic data such as 3D MRI volumes and, thus, augment training datasets, the generation of complex data remains challenging. Fibre orientation distributions (FODs) represent one such complex data type, modelling diffusion as spherical harmonics with stored weights as multiple three-dimensional volumes. We successfully trained an α-WGAN combining a generative adversarial network and a variational autoencoder to generate synthetic FODs, using the Human Connectome Project (HCP) data. Our resulting synthetic FODs produce anatomically accurate fibre bundles and connectomes, with properties matching those from our validation dataset. Our approach extends beyond FODs and could be adapted for generating various types of complex medical imaging data, particularly valuable for augmenting limited clinical datasets.

AlkuperäiskieliEnglanti
Artikkeli512
Sivut1-14
Sivumäärä14
JulkaisuCommunications Biology
Vuosikerta8
Numero1
DOI - pysyväislinkit
TilaJulkaistu - jouluk. 2025
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Diffusion MRI GAN synthesizing fibre orientation distribution data using generative adversarial networks'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä