Diffusion map for clustering fMRI spatial maps extracted by independent component analysis

Tuomo Sipola, Fengyu Cong, Tapani Ristaniemi, Vinoo Alluri, Petri Toiviainen, Elvira Brattico, Asoke K. Nandi

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionScientificvertaisarvioitu

7 Sitaatiot (Scopus)

Abstrakti

Functional magnetic resonance imaging (fMRI) produces data about activity inside the brain, from which spatial maps can be extracted by independent component analysis (ICA). In datasets, there are n spatial maps that contain p voxels. The number of voxels is very high compared to the number of analyzed spatial maps. Clustering of the spatial maps is usually based on correlation matrices. This usually works well, although such a similarity matrix inherently can explain only a certain amount of the total variance contained in the high-dimensional data where n is relatively small but p is large. For high-dimensional space, it is reasonable to perform dimensionality reduction before clustering. In this research, we used the recently developed diffusion map for dimensionality reduction in conjunction with spectral clustering. This research revealed that the diffusion map based clustering worked as well as the more traditional methods, and produced more compact clusters when needed.

AlkuperäiskieliEnglanti
Otsikko2013 IEEE International Workshop on Machine Learning for Signal Processing - Proceedings of MLSP 2013
DOI - pysyväislinkit
TilaJulkaistu - 2013
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaIEEE International Workshop on Machine Learning for Signal Processing - Southampton, Iso-Britannia
Kesto: 22 syysk. 201325 syysk. 2013
Konferenssinumero: 16

Julkaisusarja

NimiIEEE International Workshop on Machine Learning for Signal Processing
ISSN (painettu)2161-0363

Workshop

WorkshopIEEE International Workshop on Machine Learning for Signal Processing
LyhennettäMLSP
Maa/AlueIso-Britannia
KaupunkiSouthampton
Ajanjakso22/09/201325/09/2013

Sormenjälki

Sukella tutkimusaiheisiin 'Diffusion map for clustering fMRI spatial maps extracted by independent component analysis'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä