DGC-Net: Dense Geometric Correspondence Network

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussavertaisarvioitu



  • University Hospital of Oulu
  • Swiss Federal Institute of Technology Zurich
  • Tampere University of Technology


This paper addresses the challenge of dense pixel correspondence estimation between two images. This problem is closely related to optical flow estimation task where ConvNets (CNNs) have recently achieved significant progress. While optical flow methods produce very accurate results for the small pixel translation and limited appearance variation scenarios, they hardly deal with the strong geometric transformations that we consider in this work. In this paper, we propose a coarse-to-fine CNN-based framework that can leverage the advantages of optical flow approaches and extend them to the case of large transformations providing dense and subpixel accurate estimates. It is trained on synthetic transformations and demonstrates very good performance to unseen, realistic, data. Further, we apply our method to the problem of relative camera pose estimation and demonstrate that the model outperforms existing dense approaches.


OtsikkoProceedings - 2019 IEEE Winter Conference on Applications of Computer Vision, WACV 2019
TilaJulkaistu - 4 maaliskuuta 2019
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaIEEE Winter Conference on Applications of Computer Vision - Waikoloa Village, Yhdysvallat
Kesto: 7 tammikuuta 201911 tammikuuta 2019
Konferenssinumero: 19


NimiIEEE Winter Conference on Applications of Computer Vision
ISSN (painettu)2472-6737


ConferenceIEEE Winter Conference on Applications of Computer Vision
KaupunkiWaikoloa Village

ID: 34750252