Projekteja vuodessa
Abstrakti
In the vertex connectivity problem, given an undirected n-vertex m-edge graph G, we need to compute the minimum number of vertices that can disconnect G after removing them. This problem is one of the most well-studied graph problems. From 2019, a new line of work [Nanongkai et al.~STOC'19;SODA'20;STOC'21] has used randomized techniques to break the quadratic-time barrier and, very recently, culminated in an almost-linear time algorithm via the recently announced max-flow algorithm by Chen et al. In contrast, all known deterministic algorithms are much slower. The fastest algorithm [Gabow FOCS'00] takes O(m(n+min{c^(5/2),cn^(3/4)})) time where c is the vertex connectivity. It remains open whether there exists a subquadratic-time deterministic algorithm for any constant c>3.
In this paper, we give the first deterministic almost-linear time vertex connectivity algorithm for all constants c. Our running time is m1+o(1)2O(c2) time, which is almost-linear for all c=o(sqrt(log n)). This is the first deterministic algorithm that breaks the O(n^2)-time bound on sparse graphs where m=O(n), which is known for more than 50 years ago [Kleitman'69]. Towards our result, we give a new reduction framework to vertex expanders which in turn exploits our new almost-linear time construction of mimicking network for vertex connectivity. The previous construction by Kratsch and Wahlström [FOCS'12] requires large polynomial time and is randomized.
In this paper, we give the first deterministic almost-linear time vertex connectivity algorithm for all constants c. Our running time is m1+o(1)2O(c2) time, which is almost-linear for all c=o(sqrt(log n)). This is the first deterministic algorithm that breaks the O(n^2)-time bound on sparse graphs where m=O(n), which is known for more than 50 years ago [Kleitman'69]. Towards our result, we give a new reduction framework to vertex expanders which in turn exploits our new almost-linear time construction of mimicking network for vertex connectivity. The previous construction by Kratsch and Wahlström [FOCS'12] requires large polynomial time and is randomized.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Proceedings of 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS) |
Kustantaja | IEEE |
Sivut | 789-800 |
ISBN (elektroninen) | 978-1-6654-5519-0 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 30 lokak. 2022 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisuussa |
Tapahtuma | Annual Symposium on Foundations of Computer Science - Denver, Yhdysvallat Kesto: 31 lokak. 2022 → 3 marrask. 2022 Konferenssinumero: 63 |
Julkaisusarja
Nimi | Annual Symposium on Foundations of Computer Science |
---|---|
ISSN (elektroninen) | 2575-8454 |
Conference
Conference | Annual Symposium on Foundations of Computer Science |
---|---|
Lyhennettä | FOCS |
Maa/Alue | Yhdysvallat |
Kaupunki | Denver |
Ajanjakso | 31/10/2022 → 03/11/2022 |
Sormenjälki
Sukella tutkimusaiheisiin 'Deterministic Small Vertex Connectivity in Almost Linear Time'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 1 Aktiivinen
-
ALGOCom (ERC)
Chalermsook, P., Jindal, G., Franck, M., Spoerhase, J., Jiamjitrak, W., Khodamoradi, K., Yingchareonthawornchai, S., Gadekar, A. & Orgo, L.
01/02/2018 → 31/01/2024
Projekti: EU: ERC grants