Abstrakti
This work considers the inclusion detection problem of electrical impedance tomography with stochastic conductivities. It is shown that a conductivity anomaly with a random conductivity can be identified by applying the factorization method or the monotonicity method to the mean value of the corresponding Neumann-to-Dirichlet map provided that the anomaly has high enough contrast in the sense of expectation. The theoretical results are complemented by numerical examples in two spatial dimensions.
Alkuperäiskieli | Englanti |
---|---|
Artikkeli | 115012 |
Sivut | 1-18 |
Julkaisu | Inverse Problems |
Vuosikerta | 33 |
Numero | 11 |
DOI - pysyväislinkit | |
Tila | Julkaistu - lokak. 2017 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |