Detecting stable adsorbates of (1S)-camphor on Cu(111) with Bayesian optimization

Jari Jarvi*, Patrick Rinke, Milica Todorovic

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

69 Lataukset (Pure)

Abstrakti

Identifying the atomic structure of organic-inorganic interfaces is challenging with current research tools. Interpreting the structure of complex molecular adsorbates from microscopy images can be difficult, and using atomistic simulations to find the most stable structures is limited to partial exploration of the potential energy surface due to the high-dimensional phase space. In this study, we present the recently developed Bayesian Optimization Structure Search ( BOSS) method as an efficient solution for identifying the structure of non-planar adsorbates. We apply BOSS with density-functional theory simulations to detect the stable adsorbate structures of (1S)-camphor on the Cu(111) surface. We identify the optimal structure among eight unique types of stable adsorbates, in which camphor chemisorbs via oxygen (global minimum) or physisorbs via hydrocarbons to the Cu(111) surface. This study demonstrates that new cross-disciplinary tools, such as BOSS, facilitate the description of complex surface structures and their properties, and ultimately allow us to tune the functionality of advanced materials.

AlkuperäiskieliEnglanti
Sivut1577-1589
Sivumäärä13
JulkaisuBeilstein Journal of Nanotechnology
Vuosikerta11
DOI - pysyväislinkit
TilaJulkaistu - 19 lokak. 2020
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Detecting stable adsorbates of (1S)-camphor on Cu(111) with Bayesian optimization'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä