Detecting covert disruptive behavior in online interaction by analyzing conversational features and norm violations

Henna Paakki*, Heidi Vepsäläinen, Antti Salovaara, Bushra Zafar

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

1 Sitaatiot (Scopus)
87 Lataukset (Pure)

Abstrakti

Disruptive behavior is a prevalent threat to constructive online engagement. Covert behaviors, such as trolling, are especially challenging to detect automatically, because they utilize deceptive strategies to manipulate conversation. We illustrate a novel approach to their detection: analyzing conversational structures instead of focusing only on messages in isolation. Building on conversation analysis, we demonstrate that (1) conversational actions and their norms provide concepts for a deeper understanding of covert disruption, and that (2) machine learning, natural language processing and structural analysis of conversation can complement message-level features to create models that surpass earlier approaches to trolling detection. Our models, developed for detecting overt (aggression) as well as covert (trolling) behaviors using prior studies' message-level features and new conversational action features, achieved high accuracies (0.90 and 0.92, respectively). The findings offer a theoretically grounded approach to computationally analyzing social media interaction and novel methods for effectively detecting covert disruptive conversations online.

AlkuperäiskieliEnglanti
Artikkeli20
JulkaisuACM Transactions on Computer-Human Interaction
Vuosikerta31
Numero2
Varhainen verkossa julkaisun päivämäärä2023
DOI - pysyväislinkit
TilaJulkaistu - 29 tammik. 2024
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Detecting covert disruptive behavior in online interaction by analyzing conversational features and norm violations'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä