Projekteja vuodessa
Abstrakti
Determining the sensitivity of the posterior to perturbations of the prior and likelihood is an important part of the Bayesian workflow. We introduce a practical and computationally efficient sensitivity analysis approach using importance sampling to estimate properties of posteriors resulting from power-scaling the prior or likelihood. On this basis, we suggest a diagnostic that can indicate the presence of prior-data conflict or likelihood noninformativity and discuss limitations to this power-scaling approach. The approach can be easily included in Bayesian workflows with minimal effort by the model builder and we present an implementation in our new R package priorsense. We further demonstrate the workflow on case studies of real data using models varying in complexity from simple linear models to Gaussian process models.
Alkuperäiskieli | Englanti |
---|---|
Artikkeli | 57 |
Sivut | 1-27 |
Sivumäärä | 27 |
Julkaisu | STATISTICS AND COMPUTING |
Vuosikerta | 34 |
Numero | 1 |
Varhainen verkossa julkaisun päivämäärä | 31 jouluk. 2023 |
DOI - pysyväislinkit | |
Tila | Julkaistu - helmik. 2024 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |
Sormenjälki
Sukella tutkimusaiheisiin 'Detecting and diagnosing prior and likelihood sensitivity with power-scaling'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 1 Päättynyt
-
-: Finnish Center for Artificial Intelligence
Kaski, S. (Vastuullinen tutkija)
01/01/2019 → 31/12/2022
Projekti: Academy of Finland: Other research funding
Laitteet
Lehtileikkeet
-
Findings on Statistics and Computing Discussed by Investigators at Aalto University (Detecting and Diagnosing Prior and Likelihood Sensitivity With Power-scaling)
08/02/2024
1 kohde/ Medianäkyvyys
Lehdistö/media: Esiintyminen mediassa