Projekteja vuodessa
Abstrakti
The computation of dynamical correlators of quantum many-body systems represents an open critical challenge in condensed matter physics. While powerful methodologies have risen in recent years, covering the full parameter space remains unfeasible for most many-body systems with a complex configuration space. Here we demonstrate that conditional generative adversarial networks (GANs) allow simulating the full parameter space of several many-body systems, accounting both for controlled parameters and for stochastic disorder effects. After training with a restricted set of noisy many-body calculations, the conditional GAN algorithm provides the whole dynamical excitation spectra for a Hamiltonian instantly and with an accuracy analogous to the exact calculation. We further demonstrate how the trained conditional GAN automatically provides a powerful method for Hamiltonian learning from its dynamical excitations, and how to flag nonphysical systems via outlier detection. Our methodology puts forward generative adversarial learning as a powerful technique to explore complex many-body phenomena, providing a starting point to design large-scale quantum many-body matter.
Alkuperäiskieli | Englanti |
---|---|
Artikkeli | 033223 |
Sivut | 1-17 |
Sivumäärä | 17 |
Julkaisu | PHYSICAL REVIEW RESEARCH |
Vuosikerta | 4 |
Numero | 3 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 19 syysk. 2022 |
OKM-julkaisutyyppi | A1 Julkaistu artikkeli, soviteltu |
Sormenjälki
Sukella tutkimusaiheisiin 'Designing quantum many-body matter with conditional generative adversarial networks'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 2 Aktiivinen
-
Tekninen murto-osa-kvantiaine kierretyissä van der Waals -materiaaleissa
01/09/2020 → 31/08/2025
Projekti: Academy of Finland: Other research funding
-
Tekninen murto-osa-kvantiaine kierretyissä van der Waals -materiaaleissa
Lado, J., Hyart, T., Koch, R. & Kumar, P.
01/09/2020 → 31/08/2023
Projekti: Academy of Finland: Other research funding