79 Lataukset (Pure)

Abstrakti

Slippery road weather conditions are prevalent in many regions and cause a regular risk for traffic. Still, there has been less research on how autonomous vehicles could detect slippery driving conditions on the road to drive safely. In this work, we propose a method to predict a dense grip map from the area in front of the car, based on postprocessed multimodal sensor data. We trained a convolutional neural network to predict pixelwise grip values from fused RGB camera, thermal camera, and LiDAR reflectance images, based on weakly supervised ground truth from an optical road weather sensor.

The experiments show that it is possible to predict dense grip values with good accuracy from the used data modalities as the produced grip map follows both ground truth measurements and local weather conditions, such as snowy areas on the road. The model using only the RGB camera or LiDAR reflectance modality provided good baseline results for grip prediction accuracy while using models fusing the RGB camera, thermal camera, and LiDAR modalities improved the grip predictions significantly.
AlkuperäiskieliEnglanti
OtsikkoPattern Recognition - 27th International Conference, ICPR 2024, Proceedings
ToimittajatApostolos Antonacopoulos, Subhasis Chaudhuri, Rama Chellappa, Cheng-Lin Liu, Saumik Bhattacharya, Umapada Pal
KustantajaSpringer
Sivut387–404
ISBN (elektroninen)978-3-031-78447-7
ISBN (painettu)978-3-031-78446-0
DOI - pysyväislinkit
TilaJulkaistu - 3 jouluk. 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Conference on Pattern Recognition - Kolkata, Intia
Kesto: 1 jouluk. 20245 jouluk. 2024
Konferenssinumero: 27

Julkaisusarja

NimiLecture Notes in Computer Science
KustantajaSpringer
Vuosikerta15317
ISSN (painettu)0302-9743
ISSN (elektroninen)1611-3349

Conference

ConferenceInternational Conference on Pattern Recognition
LyhennettäICPR
Maa/AlueIntia
KaupunkiKolkata
Ajanjakso01/12/202405/12/2024

Sormenjälki

Sukella tutkimusaiheisiin 'Dense Road Surface Grip Map Prediction from Multimodal Image Data'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä