Deformation equivariant cross-modality image synthesis with paired non-aligned training data

Joel Honkamaa*, Umair Khan, Sonja Koivukoski, Mira Valkonen, Leena Latonen, Pekka Ruusuvuori, Pekka Marttinen

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

3 Sitaatiot (Scopus)
66 Lataukset (Pure)

Abstrakti

Cross-modality image synthesis is an active research topic with multiple medical clinically relevant applications. Recently, methods allowing training with paired but misaligned data have started to emerge. However, no robust and well-performing methods applicable to a wide range of real world data sets exist. In this work, we propose a generic solution to the problem of cross-modality image synthesis with paired but non-aligned data by introducing new deformation equivariance encouraging loss functions. The method consists of joint training of an image synthesis network together with separate registration networks and allows adversarial training conditioned on the input even with misaligned data. The work lowers the bar for new clinical applications by allowing effortless training of cross-modality image synthesis networks for more difficult data sets.

AlkuperäiskieliEnglanti
Artikkeli102940
Sivut1-13
Sivumäärä13
JulkaisuMedical Image Analysis
Vuosikerta90
DOI - pysyväislinkit
TilaJulkaistu - jouluk. 2023
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Deformation equivariant cross-modality image synthesis with paired non-aligned training data'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä