Deep Learning Models in Forest Mapping Using Multitemporal SAR and Optical Satellite Data

Shaojia Ge, Hong Gu, Weimin Su, Jaan Praks, Anne Lonnqvist, Oleg Antropov

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

Abstrakti

In this study, we evaluate the potential of deep learning models in predicting forest tree height in boreal forest zone using ESA Sentinel-1 and Sentinel-2 images. The performance of studied deep learning models is compared to several popular conventional machine learning approaches. The study area is located near Hyytiala forestry station in Finland, and represents a conifer-dominated mixed boreal forestland. Improved predictions were obtained when using combined optical and SAR data for all studied models. Our results indicate that UNet based models can achieve better accuracy in predicting forest tree heights (RMSE of 1.90m, mathrm{R}{2} of 0.69), compared to traditional parametric and machine learning models with RMSE range of 2.27-2.41m and mathrm{R}{2} range of 0.50-0.56 when satellite optical and radar data are combined.

AlkuperäiskieliEnglanti
OtsikkoIGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium
KustantajaIEEE
Sivut5688-5691
Sivumäärä4
ISBN (elektroninen)978-1-6654-2792-0
DOI - pysyväislinkit
TilaJulkaistu - 2022
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Geoscience and Remote Sensing Symposium - Kuala Lumpur, Malesia
Kesto: 17 heinäk. 202222 heinäk. 2022

Julkaisusarja

Nimi IEEE International Geoscience and Remote Sensing Symposium proceedings
ISSN (painettu)2153-6996
ISSN (elektroninen)2153-7003

Conference

ConferenceIEEE International Geoscience and Remote Sensing Symposium
LyhennettäIGARSS
Maa/AlueMalesia
KaupunkiKuala Lumpur
Ajanjakso17/07/202222/07/2022

Sormenjälki

Sukella tutkimusaiheisiin 'Deep Learning Models in Forest Mapping Using Multitemporal SAR and Optical Satellite Data'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä