Projekteja vuodessa
Abstrakti
In this study, we evaluate the potential of deep learning models in predicting forest tree height in boreal forest zone using ESA Sentinel-1 and Sentinel-2 images. The performance of studied deep learning models is compared to several popular conventional machine learning approaches. The study area is located near Hyytiala forestry station in Finland, and represents a conifer-dominated mixed boreal forestland. Improved predictions were obtained when using combined optical and SAR data for all studied models. Our results indicate that UNet based models can achieve better accuracy in predicting forest tree heights (RMSE of 1.90m, mathrm{R}{2} of 0.69), compared to traditional parametric and machine learning models with RMSE range of 2.27-2.41m and mathrm{R}{2} range of 0.50-0.56 when satellite optical and radar data are combined.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium |
Kustantaja | IEEE |
Sivut | 5688-5691 |
Sivumäärä | 4 |
ISBN (elektroninen) | 978-1-6654-2792-0 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2022 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | IEEE International Geoscience and Remote Sensing Symposium - Kuala Lumpur, Malesia Kesto: 17 heinäk. 2022 → 22 heinäk. 2022 |
Julkaisusarja
Nimi | IEEE International Geoscience and Remote Sensing Symposium proceedings |
---|---|
ISSN (painettu) | 2153-6996 |
ISSN (elektroninen) | 2153-7003 |
Conference
Conference | IEEE International Geoscience and Remote Sensing Symposium |
---|---|
Lyhennettä | IGARSS |
Maa/Alue | Malesia |
Kaupunki | Kuala Lumpur |
Ajanjakso | 17/07/2022 → 22/07/2022 |
Sormenjälki
Sukella tutkimusaiheisiin 'Deep Learning Models in Forest Mapping Using Multitemporal SAR and Optical Satellite Data'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 1 Päättynyt
-
MULTICO: Autonomous Sensing using Satellites, Multicopters, Sensors and Actuators
Jäntti, R. (Vastuullinen tutkija)
01/04/2020 → 31/03/2022
Projekti: BF Co-Innovation