Abstrakti
Prediction is a vague concept that is why we need to conceptualize it specifically for underground deformation time-series data. For this impending issue, this paper employs an advanced deep learning model Bi-LSTM-AM to address it. The results show its applicability for practical engineering. The proposed model is compared with other basic deep learning models including long short-term memory (LSTM), Bi-LSTM, gated recurrent units (GRU), and temporal convolutional networks (TCN). These models cover the most common three forms of deep learning for time-series prediction: recurrent neural networks (RNN) and convolutional neural networks (CNN). This research is supposed to benefit the underground deformation time-series prediction.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Expanding Underground - Knowledge and Passion to Make a Positive Impact on the World- Proceedings of the ITA-AITES World Tunnel Congress, WTC 2023 |
Alaotsikko | Proceedings of the ITA-AITES World Tunnel Congress 2023 (WTC 2023), 12-18 May 2023, Athens, Greece |
Toimittajat | Georgios Anagnostou, Andreas Benardos, Vassilis P. Marinos |
Julkaisupaikka | London |
Kustantaja | CRC Press |
Sivut | 2775-2781 |
Sivumäärä | 7 |
Painos | 1st Edition |
ISBN (elektroninen) | 978-1-003-34803-0 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 12 huhtik. 2023 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | World Tunnel Congress - Athens, Kreikka Kesto: 12 toukok. 2023 → 18 toukok. 2023 |
Conference
Conference | World Tunnel Congress |
---|---|
Lyhennettä | WTC |
Maa/Alue | Kreikka |
Kaupunki | Athens |
Ajanjakso | 12/05/2023 → 18/05/2023 |