Abstrakti
Centrifugal pumps play a vital role in many industrial processes such as pulp and paper production and wastewater treatment. Condition monitoring has the potential to make pumps more reliable and energy efficient. However, implementing such a monitoring system is costly. This paper presents a novel deep learning application for fault diagnosis of centrifugal pumps using data from a variable frequency drive (VFD). This approach can potentially offer a sensorless pump condition monitoring method. For this study, a new dataset, consisting of two centrifugal pump fault conditions, namely cavitation and abrasive metal-metal contact, was recorded using torque estimate data from a VFD. The dataset was used to train a Convolutional Neural Network with Wide First-Layer Kernels (WDCNN). The trained model achieved a weighted classification accuracy of 78.4% with timeseries samples and 85.5% with corresponding frequency domain samples. The results demonstrate the potential for detecting multiple pump fault states from VFD data.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Advances in Mechanism and Machine Science - Proceedings of the 16th IFToMM World Congress 2023—Volume 1 |
Toimittajat | Masafumi Okada |
Kustantaja | Springer |
Sivut | 905-914 |
Sivumäärä | 10 |
ISBN (elektroninen) | 978-3-031-45705-0 |
ISBN (painettu) | 978-3-031-45704-3 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2023 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | International Federation of Theory of Machines and Mechanisms World Congress - Tokyo, Japani Kesto: 5 marrask. 2023 → 9 marrask. 2023 Konferenssinumero: 16 |
Julkaisusarja
Nimi | Mechanisms and Machine Science |
---|---|
Vuosikerta | 147 |
ISSN (painettu) | 2211-0984 |
ISSN (elektroninen) | 2211-0992 |
Conference
Conference | International Federation of Theory of Machines and Mechanisms World Congress |
---|---|
Lyhennettä | IFToMM WC |
Maa/Alue | Japani |
Kaupunki | Tokyo |
Ajanjakso | 05/11/2023 → 09/11/2023 |