Deep Learning for Centrifugal Pump Condition Monitoring Using Data from Variable Frequency Drive

Topias Turunen*, Jesse Miettinen, Aleksanteri Hämäläinen, Aku Karhinen, Raine Viitala

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

Abstrakti

Centrifugal pumps play a vital role in many industrial processes such as pulp and paper production and wastewater treatment. Condition monitoring has the potential to make pumps more reliable and energy efficient. However, implementing such a monitoring system is costly. This paper presents a novel deep learning application for fault diagnosis of centrifugal pumps using data from a variable frequency drive (VFD). This approach can potentially offer a sensorless pump condition monitoring method. For this study, a new dataset, consisting of two centrifugal pump fault conditions, namely cavitation and abrasive metal-metal contact, was recorded using torque estimate data from a VFD. The dataset was used to train a Convolutional Neural Network with Wide First-Layer Kernels (WDCNN). The trained model achieved a weighted classification accuracy of 78.4% with timeseries samples and 85.5% with corresponding frequency domain samples. The results demonstrate the potential for detecting multiple pump fault states from VFD data.

AlkuperäiskieliEnglanti
OtsikkoAdvances in Mechanism and Machine Science - Proceedings of the 16th IFToMM World Congress 2023—Volume 1
ToimittajatMasafumi Okada
KustantajaSpringer
Sivut905-914
Sivumäärä10
ISBN (elektroninen)978-3-031-45705-0
ISBN (painettu)978-3-031-45704-3
DOI - pysyväislinkit
TilaJulkaistu - 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Federation of Theory of Machines and Mechanisms World Congress - Tokyo, Japani
Kesto: 5 marrask. 20239 marrask. 2023
Konferenssinumero: 16

Julkaisusarja

NimiMechanisms and Machine Science
Vuosikerta147
ISSN (painettu)2211-0984
ISSN (elektroninen)2211-0992

Conference

ConferenceInternational Federation of Theory of Machines and Mechanisms World Congress
LyhennettäIFToMM WC
Maa/AlueJapani
KaupunkiTokyo
Ajanjakso05/11/202309/11/2023

Sormenjälki

Sukella tutkimusaiheisiin 'Deep Learning for Centrifugal Pump Condition Monitoring Using Data from Variable Frequency Drive'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä