Deep Learning for Tube Amplifier Emulation

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

45 Sitaatiot (Scopus)

Abstrakti

Analog audio effects and synthesizers often owe their distinct sound to circuit nonlinearities. Faithfully modeling such significant aspect of the original sound in virtual analog software can prove challenging. The current work proposes a generic data-driven approach to virtual analog modeling and applies it to the Fender Bassman 56F-A vacuum-tube amplifier. Specifically, a feedforward variant of the WaveNet deep neural network is trained to carry out a regression on audio waveform samples from input to output of a SPICE model of the tube amplifier. The output signals are pre-emphasized to assist the model at learning the high-frequency content. The results of a listening test suggest that the proposed model accurately emulates the reference device. In particular, the model responds to user control changes, and faithfully restitutes the range of sonic characteristics found across the configurations of the original device.
AlkuperäiskieliEnglanti
Otsikko44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019; Brighton; United Kingdom; 12-17 May 2019 : Proceedings
KustantajaIEEE
Sivut471-475
Sivumäärä5
ISBN (elektroninen)978-1-4799-8131-1
ISBN (painettu)978-1-4799-8132-8
DOI - pysyväislinkit
TilaJulkaistu - 1 toukok. 2019
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Conference on Acoustics, Speech, and Signal Processing - Brighton, Iso-Britannia
Kesto: 12 toukok. 201917 toukok. 2019
Konferenssinumero: 44

Julkaisusarja

NimiProceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing
ISSN (painettu)1520-6149
ISSN (elektroninen)2379-190X

Conference

ConferenceIEEE International Conference on Acoustics, Speech, and Signal Processing
LyhennettäICASSP
Maa/AlueIso-Britannia
KaupunkiBrighton
Ajanjakso12/05/201917/05/2019

Sormenjälki

Sukella tutkimusaiheisiin 'Deep Learning for Tube Amplifier Emulation'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä