Deep-Learning for Tidemark Segmentation in Human Osteochondral Tissues Imaged with Micro-computed Tomography

Aleksei Tiulpin*, Mikko Finnilä, Petri Lehenkari, Heikki J. Nieminen, Simo Saarakkala

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionScientificvertaisarvioitu

6 Sitaatiot (Scopus)

Abstrakti

Three-dimensional (3D) semi-quantitative grading of pathological features in articular cartilage (AC) offers significant improvements in basic research of osteoarthritis (OA). We have earlier developed the 3D protocol for imaging of AC and its structures which includes staining of the sample with a contrast agent (phosphotungstic acid, PTA) and a consequent scanning with micro-computed tomography. Such a protocol was designed to provide X-ray attenuation contrast to visualize AC structure. However, at the same time, this protocol has one major disadvantage: the loss of contrast at the tidemark (calcified cartilage interface, CCI). An accurate segmentation of CCI can be very important for understanding the etiology of OA and ex-vivo evaluation of tidemark condition at early OA stages. In this paper, we present the first application of Deep Learning to PTA-stained osteochondral samples that allows to perform tidemark segmentation in a fully-automatic manner. Our method is based on U-Net trained using a combination of binary cross-entropy and soft-Jaccard loss. On cross-validation, this approach yielded intersection over the union of 0.59, 0.70, 0.79, 0.83 and 0.86 within 15 μm, 30 μm, 45 μm, 60 μm, and 75 μm padded zones around the tidemark, respectively. Our codes and the dataset that consisted of 35 PTA-stained human AC samples are made publicly available together with the segmentation masks to facilitate the development of biomedical image segmentation methods.

AlkuperäiskieliEnglanti
OtsikkoAdvanced Concepts for Intelligent Vision Systems - 20th International Conference, ACIVS 2020, Proceedings
ToimittajatJacques Blanc-Talon, Patrice Delmas, Wilfried Philips, Dan Popescu, Paul Scheunders
Sivut131-138
Sivumäärä8
DOI - pysyväislinkit
TilaJulkaistu - 1 tammik. 2020
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaInternational Conference on Advanced Concepts for Intelligent Vision Systems - Auckland, Uusi-Seelanti
Kesto: 10 helmik. 202014 helmik. 2020
Konferenssinumero: 20

Julkaisusarja

NimiLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
KustantajaSpringer
Vuosikerta12002 LNCS
ISSN (painettu)0302-9743
ISSN (elektroninen)1611-3349

Conference

ConferenceInternational Conference on Advanced Concepts for Intelligent Vision Systems
LyhennettäACIVS
Maa/AlueUusi-Seelanti
KaupunkiAuckland
Ajanjakso10/02/202014/02/2020

Sormenjälki

Sukella tutkimusaiheisiin 'Deep-Learning for Tidemark Segmentation in Human Osteochondral Tissues Imaged with Micro-computed Tomography'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä