Deep learning for prediction of cardiac indices from photoplethysmographic waveform: A virtual database approach

Janne M.J. Huttunen*, Leo Kärkkäinen, Mikko Honkala, Harri Lindholm

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

7 Sitaatiot (Scopus)

Abstrakti

Deep learning methods combined with large datasets have recently shown significant progress in solving several medical tasks. However, collecting and annotating large datasets can be a very cumbersome and expensive task. We tackle these problems with a virtual database approach where training data is generated using computer simulations of related phenomena. Specifically, we concentrate on the following problem: can cardiovascular indices such as aortic elasticity, diastolic and systolic blood pressures, and blood flow from heart be predicted continuously using wearable photoplethysmographic sensors? We simulate the blood flow using a haemodynamic model consisting of the entire human circulation. Repeated evaluation of the simulator allows us to create a database of “virtual subjects” with size that is only limited by available computational resources. Using this database, we train neural networks to predict the cardiac indices from photoplethysmographic signal waveform. We consider two approaches: neural networks based on predefined input features and deep convolutional neural networks taking waveform directly as the input. The performance of the methods is demonstrated using numerical examples, thus carrying out a preliminary assessment of the approaches. The results show improvements in accuracy compared with the previous methods. The improvements are especially significant with indices related to aortic elasticity and maximum blood flow. The proposed approach would provide new means to measure cardiovascular health continuously, for example, with a simple wrist device.

AlkuperäiskieliEnglanti
Artikkelie3303
Sivumäärä17
JulkaisuINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING
Vuosikerta36
Numero3
Varhainen verkossa julkaisun päivämääräjoulukuuta 2019
DOI - pysyväislinkit
TilaJulkaistu - 1 maaliskuuta 2020
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki

Sukella tutkimusaiheisiin 'Deep learning for prediction of cardiac indices from photoplethysmographic waveform: A virtual database approach'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä