Deep learning for magnification independent breast cancer histopathology image classification

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussavertaisarvioitu

Tutkijat

Organisaatiot

  • University of Oulu

Kuvaus

Microscopic analysis of breast tissues is necessary for a definitive diagnosis of breast cancer which is the most common cancer among women. Pathology examination requires time consuming scanning through tissue images under different magnification levels to find clinical assessment clues to produce correct diagnoses. Advances in digital imaging techniques offers assessment of pathology images using computer vision and machine learning methods which could automate some of the tasks in the diagnostic pathology workflow. Such automation could be beneficial to obtain fast and precise quantification, reduce observer variability, and increase objectivity. In this work, we propose to classify breast cancer histopathology images independent of their magnifications using convolutional neural networks (CNNs). We propose two different architectures; single task CNN is used to predict malignancy and multi-task CNN is used to predict both malignancy and image magnification level simultaneously. Evaluations and comparisons with previous results are carried out on BreaKHis dataset. Experimental results show that our magnification independent CNN approach improved the performance of magnification specific model. Our results in this limited set of training data are comparable with previous state-of-the-art results obtained by hand-crafted features. However, unlike previous methods, our approach has potential to directly benefit from additional training data, and such additional data could be captured with same or different magnification levels than previous data.

Yksityiskohdat

AlkuperäiskieliEnglanti
Otsikko2016 23rd International Conference on Pattern Recognition, ICPR 2016
TilaJulkaistu - 13 huhtikuuta 2017
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaINTERNATIONAL CONFERENCE ON PATTERN RECOGNITION - Cancun, Meksiko
Kesto: 4 joulukuuta 20168 joulukuuta 2016
Konferenssinumero: 23

Julkaisusarja

NimiInternational Conference on Pattern Recognition
ISSN (elektroninen)1051-4651

Conference

ConferenceINTERNATIONAL CONFERENCE ON PATTERN RECOGNITION
LyhennettäICPR
MaaMeksiko
KaupunkiCancun
Ajanjakso04/12/201608/12/2016

ID: 13313396